
Awell designed Help system
is a more or less essential

component of today’s Windows
applications. Woe betide the
commercial application which is
Help-less! If you develop software
for internal use, you will still find
that the number of technical
support calls from irate users will
be significantly reduced if you
include a well thought-out Help
system with your applications.

This article is designed to assist
you in the task of building Help
systems. Of course, anyone can
learn the technical nuts and bolts
of assembling a Help system – what
is more difficult is to end up with
something easy to use and which
provides the right information at
the right time. So, I’ve deliberately
focussed on the design aspects of
Help systems here.

Hypertext
Windows Help is fundamentally
based on the concept of hypertext.
At the risk of over-simplifying, a
hypertext system is essentially just
a database application. In
Windows Help, the data are chunks
of text and/or graphics called
topics. Each topic is identified by a
unique alphanumeric key called a
Context String. The Help compiler
creates a B-Tree type index of these
Context Strings, enabling the
WinHelp engine (WINHELP.EXE) to
rapidly locate and display any
topic in the compiled Help file.

You could have a topic entitled
“Using the Widget Control” in a
compiled Help file. When the topic
was created in the Help source file,
let’s say it was assigned the Con-
text String UsingWidget. When the
Help compiler compiles the source
files (text and graphics) into binary
format, it creates an index of the
Context Strings defined in the
source files. Within the Help
source files, the Help author
creates and formats text strings in
such a way as to point to a particu-
lar Context String. When the user

clicks on that text, the Help Engine
simply looks up the Context ID in
the index and “jumps” to the topic
identified by this “key field” value:
the Context String. Simple
database stuff all the way.

Help Authoring Tools
To create a Windows Help file, you
need several tools. At the most
basic level, these are:
➣ A GUI-based word processor

capable of saving as Rich Text
Format (RTF) files;

➣ A paint or draw program which
is able to save as Windows
Bitmap (.BMP) files;

➣ A screen capture program, if
you want to show screen shots
in your Help file;

➣ The Windows Help compiler
(HC31.EXE);

➣ Hotspot Editor for creating
hypergraphics (SHED.EXE).

The Windows Help compiler is
included with Delphi, but not the
Hotspot Editor [although it was
included with Borland Pascal 7!
Editor].

Of course, a dedicated Help
authoring package can be used to
replace some of these components
and the recent ones make Help
development very slick indeed. In
view of this, there is perhaps little
point using the basic technique of
hand-crafting an RTF file, so I won’t
discuss this process here.

Planning For Help
A common pitfall in planning a
development project is to either
overlook or underestimate the
importance of the Help system and
the resources that will be needed
to develop it. The time and re-
sources required must be planned
for in the project. Authoring Help
also involves specialized skills that
may or may not be available
in-house.

You will also want to consider
what type of documentation your
software requires and how much of
it can be furnished on-line. A quick

reference or a command reference
manual readily lends itself to
publication as a Windows Help file.
Installation or Getting Started
documentation, on the other hand,
is needed before the software is
installed and should be printed.

Task oriented procedural docu-
mentation is a bit of a toss-up and
there are different strategies for
approaching it. How much of this
material should be on-line and to
what extent does it duplicate mate-
rial in the printed Users Guide?
There is no single right answer. Are
your users adamant about printed
documentation? If so, would they
accept a Users Guide that covered
the basics and then be willing to
“graduate” to a high-quality Help
system?

Many documentation groups are
employing the technique of “single
sourcing" their documentation.
Single sourcing means that all
documentation is written with a
common tool and stored in a
common format (for example
Ventura,. FrameMaker, WinWord,
etc). Templates and macros are
developed for the tool which can
flag text as being print-only,
Help-only, or both. A friendly R&D
or QA engineer is then recruited to
write a utility that extracts the
on-line material from the print
documentation files and dumps it
into Rich Text Format (.RTF) – the
format for Windows Help source
files. There are some commercial
tools to make this easier, such as
MasterHelp for Ventura and
Doc-To-Help for WinWord.

One component of the Help
authoring process that is neglected
more often that not is information
management. The Help system for
even a single software product can
involve hundreds of source files
(text, graphics, map files, header
files, etc). I’ve seen situations
where lots of network disk space
was being eaten up with duplicate
graphic files simply because there
was no quick way to check what

Building Quality Help Systems
by Robert Palomo

24 The Delphi Magazine Issue 2

already existed. You should give
some thought to tracking compo-
nents of your Help system early in
the design process. A database or
spreadsheet can do wonders.

Design Tips
The first screen displayed by a
Help file is the Contents topic.
Depending upon the scope of the
Help system, a single contents
screen may or may not be
sufficient. In larger systems, the
“drill-down” approach may be
appropriate. For example, the main
contents screen may have a jump
for “Menus” which jumps to
another contents screen having
such choices as “File menu”, “Edit
menu”. In their book Developing
On-line Help for Windows, authors
Boggan, Farkas, and Welinske cite
the following design objectives for
contents topics:
➣ Provide a short path to Help

information,
➣ Ensure fast processing of the

contents topics,
➣ Prevent wrong navigation

choices,
➣ Display sibling (related) topics

in one glance.
Contents topics are a good place to
make judicious use of graphics.
Users (including this author) are
easily turned off by lines and lines
of green text in a Contents topic.
Users get their first impression of
your Help system from the
Contents screen(s), so anything
you can do to spruce these up is
worth the file size overhead.

The main Help window normally
displays a title bar, a menu bar and
a button bar. Topic text displays in
the regional immediately under the
button bar. This area is called the
scrolling region. The display
scrolls to show any material that
won’t fit in the area available. In
longer topics, this can be a prob-
lem because the topic title scrolls
out of view. If you provide a “see
also” popup near the title, this
forces the user to scroll back to the
top. You can solve these problems
by creating a non scrolling region
of the Help window.

You may decide that some infor-
mation in your Help files is, from a
design standpoint, able to stand on

its own. In that case, you might
consider using a secondary
window. For example, in a language
reference, code examples for a
procedure or function could be
displayed this way to enable easy
toggle back and forth between the
example and the reference topic in
the main Help window.

Secondary windows can contain
jumps and popups, a non scrolling
region and bitmaps just like the
main window. They cannot,
however, contain a menu or button
bar. You can define up to five
secondary windows.

Bitmaps And Hypergraphics
Using graphics in a Help file is a
matter of trade-offs. On the one
hand, Windows is a graphical
environment: one picture is worth
a thousand words, so why not take
advantage of the fact and commu-
nicate visually wherever possible?
How better to document a menu or
dialog box than to show it graphi-
cally and enable the user to pop up
information about each element?
The drawback is, of course, file
size. Color graphics significantly
swell the size of your Help file.
Monochrome graphics are leaner,
but not as pretty. You should take
into consideration the amount of
space available for the Help file
when planning the use of graphics.

The Help compiler supports
graphics in the following file for-
mats: .BMP, .SHG (“Shed Graphic”
bitmaps with “hotspots” for
jumps), .WMF, .DIB (Windows de-
vice independent bitmap) and
.MRB (multiple resolution bitmap).

One pitfall to be aware of when
using graphics is that images can
appear distorted when the help file
is run on a computer with a differ-
ent video resolution than the com-
puter which was used to create the
Help file. If you know the hardware
that your end users will be running,
you can simply develop your
graphics on a computer with the
same video resolution.

The Windows SDK [and Borland
Pascal 7 but not, apparently, Delphi!
Editor] provides a utility called
MRBC (multi-resolution bitmap
compiler) that can take separate
bitmap files for each video resolu-
tion (CGA, EGA, etc) and compile
them into a single .MRB file. At
runtime, WinHelp checks the hard-
ware and displays the resolution
and aspect ratio that most closely
matches it. Not many software
companies go to these lengths
given the decline in CGA and EGA
video systems, but you should be
aware of the option.

If you are certain that your
images will be displayed on VGA
systems, you still have the problem
of aspect ratio. The best rule of
thumb seems to be to create the
bitmaps for the lowest common
denominator display: 640x480.

One way to get the most mileage
out of graphics is to create hyper-
graphics using the Hotspot editor.
This tool imports bitmaps and
enables you to define one or more
areas as “Hotspots”. By assigning
the Hotspot the Context String of a
topic in the Help file, WinHelp will
display that topic at runtime when
the user clicks on the image. You

➤ Use of hypergraphics
to liven up the Contents
topic of the Creating
Windows Help file
included with Delphi

July 1995 The Delphi Magazine 25

can define a Hotspot as a jump or a
popup. Hypergraphics, which have
a .SHG extension, are very useful
for menu and dialog box help.

Customization
WinHelp provides an array of
command macros that enable you
to do a wide variety of customiza-
tions to your Help system. With
these macros you can customize
the button and menu bars, access
other windows applications,
control jumps to specific topics,
control the appearance of windows
and test for conditions.

With the RegisterRoutine macro,
your help file can access any
Windows DLL, thus limiting custo-
mizations only by your ability to
write DLLs. For details on these
macros search for “macros” in the
Creating Windows Help (CWH.HLP)
file that ships with Delphi. This
capability enables you to do some
very sophisticated things with the
Help system.

Writing For Help
Writing for Help and for print are
similar in many ways, but in some
ways writing for Help is less
complicated. For one thing, you
don’t have to deal with the issue of
how to organize a book. Rather
than writing long chapters that
flow in a linear fashion, you write
a series of relatively short, discrete
pieces on a single piece of
information.

The trick is to grasp the relation-
ships between these pieces. How
will each topic be accessed? What
other topics are related to it that a
user might want to access after

reading this topic? From what
other topics might a user want or
need to access this topic? Therein
lies the challenge for the Help
author. I have found that my back-
ground in databases has been a
valuable asset to me in structuring
topic access in Help systems I’ve
worked on because it helps me to
perceive these relationships.

When I’m reading a book, I don’t
mind so much dealing with
sentences that are a bit complex.
But when I’m in Help, I’m usually
there because I’m stuck on
something and need some quick
info to get me going again. I don’t
want a treatise, I just want the facts!
When I write for Help, I try to think
of what’s important to me as a Help
user and adjust my writing style
accordingly. If you’re an aspiring
Faulkner, I’d discourage you from
becoming a Help author. On the
other hand, programmers usually
tend to be overly terse.

The first rule of technical writing
is “know your audience” and this
applies as much to Help as to print.
You’ll write for Novell Network
administrators differently than
you’ll write for accounting clerks.

What about converting existing
print documentation to on-line
Help? This is a thorny issue and
there’s no single answer. In the
case of reference documentation,
the conversion is relatively easy,
but for task oriented material there
are a lot more grey areas. If the user
guide is well written in the first
place, then the job of chopping it
up into Help topics is usually feasi-
ble. If the printed manuals are
verbose and/or incomplete, you

may find it easier to get the
manuals into shape first and then
hack them up into Help topics.

Further Information
In an article like this, it’s only pos-
sible to scratch the surface of the
subject of Help authoring. If you
want to know more, there are a
couple of good resources. Check
out the Help file Creating Windows
Help. In a normal installation
there’s an icon for it in the Delphi
program group, otherwise, look for
CWH.HLP in the \DELPHI\BIN
directory. This provides pretty
comprehensive information about
the mechanics of creating and
compiling a Windows Help file.
You’ll probably find enough infor-
mation there to learn how to create
a basic Windows Help system for
an application.

If you plan to get into Help
authoring to any degree at all, I
highly recommend Developing
Online Help for Windows by Scott
Boggan, David Farkas and Joe
Welinske, published by SAMS
Publishing. This book will take you
from pure neophyte to consultant-
level expertise in Windows Help
development. It’s well organized
and indexed, very readable and
covers all the issues. It includes a
disk containing WinWord
templates and macros for creating
Windows Help source files, exam-
ple Help projects, Help project file
templates, and bitmap graphics
you can use in your own projects.
It also presents a comprehensive
review and comparison of third-
party Help authoring tools.

Authoring Help requires you to
be part writer, part coder, part QA
tester and part graphics artist.
You’ll find it to be an interesting
and challenging part of the
software development process.

Robert Palomo has been a techni-
cal writer in the software industry
in Seattle, Washington and Silicon
Valley, California for the past five
years and worked as a member of
the Delphi documentation group
at Borland before taking up his
current position. Email him at
76201.3177@compuserve.com

➤ Use of a
popup in
the main
Delphi
help file

26 The Delphi Magazine Issue 2

	Hypertext
	Help Authoring Tools
	Planning for Help
	Design Tips
	Bitmaps and Hypergraphics
	Customization
	Writing for Help
	Further Information

